
1. Conceptual Diagram

Jump controller is a belt-like controller which can be worn by users at their waists so as to control the game by jumping.

Figure 1.1- Project Conceptual Diagram

The core of this project is accelerometer’s ability in sensing an object’s acceleration in three axes: X, Y, Z and Arduino’s capability in connecting

sensors, transmitters and other circuit elements.

2. Scope and Bounds

This project will use the technology of the open source electronics prototyping platform, Arduino, to create a wearable motion-sensitive

game controller. The Arduino will be set up to sense environmental movements using an accelerometer, and send wireless data to the

receiver on the computer side to update the game (using the XBEE and ProtoShield).

However there are several possible movements in a game which can be mapped into a game controller action buttons, etc. For this

project we have chosen to focus mainly on the “Jump” action (a.k.a Vertical Movement) and we will cover neither other kinds of vertical,

diagonal or a combination of these movements nor we will do any gesture recognition, face recognition, etc.

A possible extension for this project has been shown in the picture below which will add the four directional movements to the Game

controller capabilities. To read more about this refer to section 3.d: Function Descriptions.

Figure 2.1 – Project possible extension Conceptual Diagram

3. Design Description

a. Software Architecture:

This project has two main parts. The jump algorithm which will run on the Arduino and we will develop during the semester

after doing research on existing algorithms. The second part is the game itself which runs on the PC and we will develop it

concurrently with the Jump algorithm during the project implementation phase.

The software architecture of this project has been shown in the two diagrams below:

Figure 3.1 - Software Architecture Diagram

Figure 3.2 – System Block Diagram with layers explains the flow of the algorithms running through the project.

b. Hardware Architecture

The Jump controller hardware architecture consists of:

- Accelerometer or motion/ distance sensors

- 1 Arduino Uno’s on each sides (Transmitter & Receiver)

- 1 XBee or SD Shields on each sides (Transmitter & Receiver)

- The Main computer CPU, graphics card and monitor for display

The process of updating the game according to the player’s jump height is described below:

1. The jump sensor core will be an ADXL3xx accelerometer. The ADXL3xx is a triple axis accelerometer with extremely low noise and power

consumption (only 320uA) and the sensor has a full sensing range of +/-3g. The accelerometer measures in three axes: X, Y, and Z. The x and

y-axis movement will sense tilt movement across the accelerometer and the z-axis will sense vertical movement, like a jump.

2. The Arduino will detect these movements, especially the z-axis changes, and once a pre-determined value is passed it will run the jump

algorithm (raw data conversion algorithm) on the data and will send the result as a signal through the XBEE wireless shield (transmitter) to

the computer.

3. Jump controller will communicate wirelessly using an XBee transmitter and a receiver. The module can communicate up to 100 feet indoors

or 300 feet outdoors (with line-of-sight). The signal will be received through the computer connected XBEE to tell a game character to move

accordingly.

4. For our project, the Arduino system will be connected to a wearable belt the participant can wear. The participant will jump which in turn

will cause the character in the game to jump. This system will make a more interactive and physically demanding game.

You can see the Hardware architecture and their connections in the diagram below:

Figure 3.3 – Hardware Architecture Diagram

c. Development Tools

Arduino IDE: Processing/ Wiring/ C & C++

The Arduino IDE is a cross-platform application written in Java, and is derived from the IDE for the Processing programming
language and the Wiring project. It includes a code editor with features such as syntax highlighting, brace matching, and
automatic indentation, and is also capable of compiling and uploading programs to the board with a single click. There is
typically no need to edit makefiles or run programs on a command-line interface.

Arduino programs are written in C or C++. The Arduino IDE comes with a software library called "Wiring" from the original Wiring
project, which makes many common input/output operations much easier.

Figure 3.4 – Arduino Integrated Development Environment

External Libraries:

Since we are making our game outside of the Arduino IDE environment we need to establish a connection between the Arduino code and the

game code in order to be able to update the game according to the player’s movement. For that reason we will use a third party library (.dll file)

based on the game engine we will use to make the game in order to communicate with the Arduino from our game.

Unity 3D:

Unity is a cross-platform game engine and IDE developed by Unity Technologies. It is used to develop video games for web plugins, desktop

platforms, consoles and mobile devices. The game engine was developed in C/C++, and is able to support code written in C# or JavaScript. The

game engine grew from an OS X supported game development tool in 2005 to the multi-platform game engine that it is today.

Scripting with Unity brings you fast iteration and execution and the strength and flexibility of a programming environment. In Unity, you write

simple behavior scripts in JavaScript, C# or Boo. All three languages run on the Open Source .NET platform, Mono, with rapid compilation times.

Figure 3.5 – Unity 3D Development Environment

d. Function Descriptions

Feature Implementation
(Spring 2013)

Description

Using accelerometer data √

We will use accelerometer data instead of other sensors such as pressure
sensor used in the Wii fit or similar devices.

Serial Communication (cable) √

We will test the communication of the Arduino and accelerometer with the
computer using a serial communication [using cables] first to make sure the
hardware and code works correctly.

XBee/XBee Wireless Communication

√

We will use two XBee chips and two Arduinos one on each side (Transmitter &
Receiver) to establish a wireless connection.

XBee/Modem Wireless
Communication (Using a C# server)

--

Since the XBee chip works based on the Wi-Fi protocol any other Wi-Fi
device such as your computer’s modem should be able to communicate
with it however it will need a server in between to receive the data from
the network and pass the data to another program such as Unity or Flash.

Converting accelerometer data to
jump height √

The raw data coming from the accelerometer does not represent the jump
height of the player and needs to be processed through a custom algorithm to
be able to generate the proper data for the game. We will search for different
algorithms of this kind during this project or we will come up with our own
algorithm.

Connecting Arduino to Unity3D

√

For this project we have chosen to work with Unity3D which is a 3D game
engine since we are using a 3 axis accelerometer and we have a vertical jump

movement along the Z axis.

Connecting Arduino to Flash

--

We would like to try the wireless communication using a C# server if we
had enough time and that would require a program which can
communicate well with the C# server. Flash is an ideal choice for this
purpose and also gives us the ability to make and test 2D games for this
project.

Connecting Arduino to GameMaker

--

We would also like to make it easy for hobbyists to use our jump sensors
in their own games and GameMaker provides an easy game engine to
create games. There is an external library called RS232.dll which allows
you to connect your Arduino to GameMaker and run your own game in
GameMaker.

Four directional Movement with
distance sensors
(Left, Right, Up, Down)

TBD

The four directional movements are the base of every game and an
important part of any game controller. We would like to implement this
type of movement integrated in our design to be able to claim that we
have a fully functional game controller. We have a preliminary design for
this idea but we will not start working on it or implement it until we get
the jump sensor done and test it completely.

Joystick movement (Analog data)

--

Joystick data is analog like the accelerometer data so it would be
interesting to try to implement the joystick action as well as four
directional movements.

Action sensors
(Shooting, Kicking, etc)

--

Besides the Joystick and four directional movements we have couple
other action buttons on a regular game controller which usually controls
the players’ weapons, special moves, etc. By implementing these actions
we can have a fully featured motion-based game controller.

4. Experimental Design

The experiment for jump controller will be mainly investigating the usability of the control however it’s not limited to this purpose only.

A within subject design will be used in the study. A certain number of participants (at least 10) will try the jump sensor after signing the

consent form. During the study, the participants will firstly play the game via ordinary controllers such as keyboard and mouse and then

wear the belt-like controller at their waists and play the game by jumping. Their scores will then be compared. Preliminary and post

surveys will be given to the participants and the gaming process will be recorded.

Research Questions:

In this study we are mostly focusing on investigating and finding answers to the questions below:

1) How can an accelerometer raw data received from the real world be converted properly to a meaningful data in a digital

environment?

2) How can a jump sensor be used as a game controller? How is this controller different from a regular game controller? How effective

it would be?

3) How does changing the game controller affect the player’s performance in the same game?

4) How can the jump controller be used in other areas such as sports, training, etc?

5) How prior gaming and sports experience does affects the player’s performance in the game?

Our hypotheses is that an accelerometer can effectively be used as a vertical jump sensor, the players will enjoy using the jump

controller more because of its uniqueness, they will do better in the game using the jump controller since it’s more tangible in the

context of the game and makes them feel like they are really in the game. Also the level of accuracy that we will achieve during the

implementation of the jump sensor will determine how the jump sensor can be used in other areas such as sports and training. We

believe that having prior gaming and sports experience is not essential to use the controller but they can have a positive effect.

Independent variables: game controller

The participants will experience two types of controllers in the study: mouse/keyboards and jump controller. Using mouse/keyboards,

they will play the game by sitting in front of the computer and hitting the keyboard as they usually do; using the jump controller, they

will wear a belt at their waist, stand some distances away from the computer and jump within an area to control the movements of the

object in the game.

Dependent variables: Jump controller’s usability

The controller’s usability will be indicated by several factors including:

1) Efficiency & Simplicity: Network delay, how much time is required to set up the game controller and start playing, etc.

2) Accuracy: How accurately players’ jumping will be mapped to the in-game object’s movement and how many mistakes will occur;

3) Emotional responses: means how they will enjoy the process of gaming by jumping and what is their emotional arousal to the game

control.

4) Physical responses: While wearing the jump controller are the participants able to react as quickly as when they use regular game

controllers? How does the game controller affect their performance?

Measurements

A preliminary survey will be given to participants before they start the game to get their demographic information. All participants will

need to complete a post survey to describe how they enjoy the different controllers, how easy/difficult each controller is, etc. Players’

performance in the game and the videotapes will be investigated afterwards to provide information about the controllers’ accuracy and

efficiency. Their skin conductance will be measured before and after they play the game via different controllers to indicate their

emotional arousal.

5. Schedule (Spring 2013 semester)

Item Jan Feb Mar Apr May Note

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Project Proposal

√

Due January 21st

Project & Research
Design

 √ √
Due February 10th

Circuit boards Assembly

 √ √ √ √ √ √ √ √ √ √
5 weeks development cycle until the first pilot test week.
The rest will be making changes as we go through the
testing.

Game Design

 √ √ √ √ √ √ √ √ √ √
Game Design process will happen concurrently with the
boards’ assembly process.

Game Development

 √ √ √ √ √ √ √ √ √
As soon as the game design is finalized the development
process will start. [flexible on time]

First Prototype

 √
First prototype due March 13th

Pilot Testing

 √ √
First round of pilot testing – We will bring in at least 10
participants to test our first prototype and give us feedback.

Revised Prototype

 √ √
As soon as we collect the data we will start making changes
and revising the project design based on the feedback
received.

Formal Testing

 √ √
Pilot Testing due: April 3rd – All the data should have been
collected by this date.

Final Presentation

 √
Final presentation will happen at SVAD Annual Digital Media
Showcase on April 22nd at Center for Emerging Media.

Final Report

 √
Final report will be written in a conference style paper and
will be submitted by May 6th.

